The dependence of magnetospheric plasmamass loading on geomagnetic activity using Cluster
نویسندگان
چکیده
Understanding changes in the magnetospheric mass density during disturbed geomagnetic conditions provides valuable insight into the dynamics and structure of the environment. The mass density plays a significant role in a variety of magnetospheric processes, such as wave propagation, magnetic reconnection rates, and radiation belt dynamics. In this study, the spatial variations of total plasma mass density are explored through the analysis of Cluster observations. Data from the WHISPER (Waves of High frequency and Sounder for Probing of Electron density by Relaxation) and CODIF (ion Composition and Distribution Function analyzer) instruments, on board the four Cluster spacecraft for a time interval spanning 2001–2012, are used to determine empirical models describing the distribution of the total plasma mass density along closed geomagnetic field lines. The region considered covers field lines within 5.9 ≤ L< 9.5, corresponding to the outer plasmasphere, plasmatrough, and near-Earth plasma sheet. This study extends previous work to examine and quantify spatial variations in the electron density, average ion mass, and total plasma mass density with Dst index. The results indicate that during periods of enhanced ring current strength, electron density is observed to decrease and average ion mass is observed to increase, compared with quiet geomagnetic conditions. The combination of these variations shows that although heavy ion concentration is enhanced, the decrease in plasma number density results in a general decrease in total plasma mass density during disturbed geomagnetic conditions. The observed decrease in mass density is in contrast to prevailing understanding and, due to the dependence of the Alfvén speed on mass density, has important implications for a range of plasma processes during storm time conditions (e.g., propagation of wave modes).
منابع مشابه
Semiannual Variation of Geomagnetic Activity
The semiannual variation in geomagnetic activity is well established in geomagnetic data Its explanation has remained elusive, however. We propose, simply, that it is caused by a semiannual variation in the effective southward component of the interplanetary field. The southward field arises because the interplanetary field is ordered in the solar equatorial coordinate system, whereas the inter...
متن کاملGeomagnetic activity effects on plasma sheet energy conversion
In this article we use three years (2001, 2002, and 2004) of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs) in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E ·J , where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Conc...
متن کاملRevised time-of-flight calculations for high-latitude geomagnetic pulsations using a realistic magnetospheric magnetic field model
[1] We present a simple time-of-flight analysis of Alfvén pulsations standing on closed terrestrial magnetic field lines. The technique employed in this study in order to calculate the characteristic period of such oscillations builds upon earlier time-of-flight estimates via the implementation of a more recent magnetospheric magnetic field model. In this case the model employed is the Tsyganen...
متن کاملThe relation between magnetospheric state parameters and the occurrence of plasma depletion events in the night-time mid-latitude F-region
Studies using all-sky imagers have revealed the presence of various ionospheric irregularities in the night-time mid-latitude F-region. The most prevalent and well known of these are the Medium Scale Traveling Ionospheric Disturbances (MSTIDs) that usually occur when the geomagnetic activity is low, and mid-latitude spread-F plumes that are often observed when the geomagnetic activity is high. ...
متن کاملMethod of analysis of geomagnetic data based on wavelet transform and threshold functions
The suggested method is aimed at studying the dynamics of the magnetospheric current systems during magnetic storms. The method is based on algorithmic solutions for processing of geomagnetic field variations, detection of local increases in geomagnetic disturbance intensity and estimation of their dynamic characteristics. Parameters of the algorithms allow us to evaluate the characteristics of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017